
Class : MBA (E-Commerce) II Semester
Subject : OOPS using C++

Paper Code: (201)
Topic: (i) Introduction of Inline Function in C++

(ii) Syntax , Its Advantages and Disadvantages
(iii) Sample program using Inline Function

Inline function is one of the important feature of C++.
When the program executes the function call
instruction the CPU to stores the memory address of
the instruction following the function call, copies the
arguments of the function on the stack and finally
transfers control to the specified function.

The CPU then executes the function code, stores the
function return value in a predefined memory
location/register and returns control to the calling
function. This can become overhead if the execution
time of function is less than the switching time from the
caller function to called function .

For functions that are large and/or perform complex tasks, the
overhead of the function call is usually insignificant compared
to the amount of time the function takes to run. However, for
small, commonly-used functions, the time needed to make the
function call is often a lot more than the time needed to
actually execute the function’s code. This overhead occurs for
small functions because execution time of small function is
less than the switching time.
C++ provides an inline functions to reduce the
function call overhead.

Inline function is a function that is expanded in line
when it is called.

When the inline function is called whole code of the
inline function gets inserted or substituted at the
point of inline function call.

This substitution is performed by the C++ compiler
at compile time. Inline function may increase
efficiency if it is small.

The syntax for defining the function inline is:

inline return-type function-name(parameters)
{

// function code

}

Where inline is a keyword

◦ Inlining is only a request to the compiler, not a command.

Compiler can ignore the request for Inlining. Compiler may

not perform execution of Inline function in such

circumstances like:

1)If a function contains a loop. (for, while, do-while)

2)If a function contains static variables.

3) If a function is recursive.

4) If a function return type is other than void, and the

◦ return statement doesn’t exist in function body.
5) If a function contains switch or goto statement.

◦ Inline functions provide following advantages:
1) Function call overhead doesn’t occur.
2) It also saves the overhead of push/pop variables on the stack
when function is called.
3) It also saves overhead of a return call from a function.
4) When you inline a function, you may enable compiler to
perform context specific optimization on the body of function.
Such optimizations are not possible for normal function calls.
Other optimizations can be obtained by considering the flows of
calling context and the called context.
5) Inline function may be useful (if it is small) for embedded
systems because inline can yield less code than the function call
preamble and return.

 Inline function disadvantages:

1) The added variables from the inlined function consumes additional
registers, After in-lining function if variables number which are going
to use register increases than they may create overhead on register
variable resource utilization. This means that when inline function
body is substituted at the point of function call, total number of
variables used by the function also gets inserted. So the number of
register going to be used for the variables will also get increased. So if
after function inlining variable numbers increase drastically then it
would surely cause an overhead on register utilization.

2) If you use too many inline functions then the size of the binary
executable file will be large, because of the duplication of same code.

 3) Too much Inlining can also reduce your instruction cache hit
rate, thus reducing the speed of instruction fetch from that of
cache memory to that of primary memory.

 4) Inline function may increase compile time overhead if
someone changes the code inside the inline function then all the
calling location has to be recompiled because compiler would
require to replace all the code once again to reflect the changes,
otherwise it will continue with old functionality.

 5) Inline functions may not be useful for many embedded
systems. Because in embedded systems code size is more
important than speed.

 6) Inline functions might cause thrashing because inlining might
increase size of the binary executable file. Thrashing in memory
causes performance of computer to degrade.

#include <iostream>

inline int cube(int s)

{

return (s*s*s);

}

int main()

{

cout << "The cube of 3 is: " << cube(3) << "\n";

return 0;

}

Where //Output: The cube of 3 is: 27

 In this program cube is an inline function(having one

parameter/argument) which computes cube of given number
in Cout statement. In the calling statement of cube(3) body
of the function will get substituted. i.e. return
(s*s*s); and will output 27.

__________ *********____________

