BT-101: CELL BIOLOGY

UNIT I

- 1. Cell Membrane: physicochemical properties and asymmetrical organization of lipids
- 2. Transport of small molecules across cell membranes: types and mechanism
- 3. Active Transport by ATP-powered pumps types:p-type, V-type, F-type ABC transporters
- 4. Properties and mechanisms of transporters

UNIT II

- 1. Protein targeting-cell map: signal hypothesis and default protein secretory pathway
- 2. Protein targeting: endoplasmic reticulum, golgi body, lysosome and mitochondria
- 3. Protein glycosylation-N and O linkages
- 4. Transport by vesicle formation: endocytosis and exocytosis

UNIT III

- 1. Ultra structure and function of lysosomes
- 2. Ultra structure and function of peroxisomes
- 3. Cell motility: structure and functions of microfilaments and microtubules and intermediate filaments
- 4. Cell junctions: occluding junctions, anchoring junctions and communicating junctions

UNIT IV

- 1. Molecular mechanism of Ca++ dependent cell adhesion
- 2. Molecular mechanism of Ca++ independent cell adhesion
- 3. Organization and functionsofextra-cellular matrix in animals
- 4. Extra-cellular matrix receptors on animal cells: integrins

UNIT V

- 1. Cell Signaling: G-Protein signaling, initiation and regulation of MAP kinase pathway
- 2. Molecular events accompanying eukaryotic cell cycle: miotosis
- 3. The cell cycle control proteins: cyclins
- 4. Apoptosis: pathway and significance

- 1. Sub cellular fractionation
- 2. Chromosome preparation: Mitosis Onion root tip, rat/mouse cornea, rat/mouse bone marrow, human lymphocytes
- 3. Chromosome preparation: Meiosis Rat/mouse testis, Grasshopper testis
- 4. Polytene chromosome preparation from Drosophila salivary gland
- 5. Identification of tissue typing: Histological preparation of tissue
- 6. Identification of different biomolecules in different tissues by histochemical techniques
- 7. Electron microscopy: Demonstration and good photographs for interpretation

Reference Books

- 1. Molecular Biology of the Cell (2002), Alberts et al
- 2. Molecular Cell Biology (2004), Lodish et al
- 3. Working with Molecular Cell Biology: A study Companion (2000), Storrie et al
- 4. Cell and Molecular Biology: Concepts and Experiments (3rd Ed., 2002), Gerald Karp
- 5. The Cell: A Molecular Approach (2004), G.M. Cooper
- 6. The Word of the Cell (1996), Becker et al
- 7. Cell Proliferation and Apoptosis (2003), Hughes and Mehnet
- 8. Essential Cell Biology (1998), Alberts et al
- 9. Biochemistry and Molecular Biology of Plants (2000), Buchanan et al
- 10. Harpers Biochemistry Murray et al

Amorail.

BT-102: MICROBIOLOGY

UNIT I

- 1. Classification of Microorganisms
- Morphology and structure of cell wall; eubacteria, archaea bacteria and fungi 2.
- Microbial culture media: types and applications pure culture techniques and microbial 3. staining
- 4. General account and economic importance of cyanobacteria

UNIT II

- Sterilization: physical and chemical methods
- 2. Microbial growth: growth curve, measurement of growth and factors affecting growth
- Nutrition based classification of microorganisms, different carbon and nitrogen 3. sources, transport of nutrition across membrane
- 4. Oxygen toxicity: study of catalase, peroxidase, superoxidase dismutase, mechanism of oxygen toxicity

UNIT III

- Infection and disease, types of infection, mechanism of pathogenesis of bacterial and viral diseases
- 2. Staphylococcal and Clostridia food poisoning, Bacterial diseases: Salmonellosis and Shigellosis
- 3. Fungal Diseases: Aspergillosis and Candidasis
- Viral diseases: Hepatitis B and HIV

U.IT IV

- 1. Viruses: types, isolation, cultivation and identification
- 2. Lytic and lysogenic cycle of bacteriophages
- 3. Life cycle of DNA viruses: SV 40, RNA viruses: Retroviruses
- Plant viruses: TMV and Gemini 4.

UNIT V

- Bacterial Recombination: transformation, conjugation, transduction, F-duction 1.
- Chemotherapeutic agents: classification of antibiotics, broad and narrow spectrum 2. antibiotics
- Anti-fungal and antiviral antibiotics, mode of action of antibiotics 3.
- Mechanism of drug resistance 4.

Amoral .

- 1. Preparation of Liquid and Solid media for growth of microorganisms.
- 2. Isolation and maintenance of organisms by plating, streaking and serial dilution method, slant and stab cultures, storage of microorganisms.
- 3. Isolation of pure cultures from soil and water
- Growth; Growth curve; Measurement of bacteria population by turbidometry and serial dilution methods. Effect of temperature, pH and carbon and nitrogen sources on growth.
- Microscopic examination of hacteria, Yeast and mold and study of organism by Gram's stain, acid fast stain and staining for spores
- 6. Study of mutation by Ame's Test.
- 7. Assay of antibiotics and demonstration of antibiotic resistance
- 8. Analysis of water for potability and determination of MPN.
- 9. Bacterial transformation.
- 10. Biochemical Characterization of selected microbes.
- 11. One Step growth curve of coliphage.

Reference Books

- General microbiology, R.Y. Ingraham, J.L. Wheelis, M.L. and Painter, P.R. The Macmillan Press Ltd.
- 2. Brock Biology of microorganism, M.T. Martinko, J.M. and Parker, J. Prentice-Hall.
- 3. Microbiology, Pelczar, M.J., Chan E.C.S. and Kreig, N.R., Tata McGraw Hill.
- Microbial Genetics, Malloy, S.R., Cronan, J.E. Jr and Freifelder, D.Jones, Bartlett Publishers

MUDRAY

- 5. Microbiology-A Laboratory Manual, cappuccino, J.G. Sherman, N. Addison Wesley.
- 6. Microbiological Applications (A Laboratory Manua! in General microbiology) Benson, H.J. WCB: Wm C Brown Publishers

BT-103: BIOMOLECULES & METABOLISM

UNIT I

- 1. Carbohydrates: structure, classification, properties and functions
- 2. Homo and hetero polysaccharides: carbohydrate derivatives
- 3. Lipids classification, structure, properties and functions
- 4. Lipids with specific biological functions: micelles and liposomes

UNIT II

- 1. Amino acids: structure, classification, properties and functions, peptides and polypeptides
- 2. Proteins: properties, primary, secondary, tertiary and quaternary structure
- 3. Water soluble vitamins; structure, distribution, interaction and functions
- 4. Fat soluble vitamins: structure, distribution and functions

UNIT III

- 1. Nucleotides: structure of purines and pyrimidine bases, nucleosides and nucleotides
- 2. DNA: structure and confirmation
- 3. DNA: denaturation, degradation and modification
- 4. RNA: structure, types and functions of mRNA, tRNA and rRNA

UNIT IV

- 1. First and second laws of thermodynamics & concept of free energy
- 2. ATP synthesis and its importance in biological reactions
- 3. Carbohydrate metabolism: basic concepts of glycolysis, Krebs cycle, glycogenesis, pentose phosphate pathway and gluconeogenesis
- 4. Electron transport and oxidative phosphorylation : electron carriers, complexes I to IV, chemiosmotic theory

UNIT V

- 1. Overview of amino acid metabolism
- 2. Regulation of amino acid metabolism
- 3. Overview of nucleotide metabolism
- 4. Inborn errors of metabolism

KHIMAN

- 1. Titration of amino acids.
- 2. Colorometric determination of pK.
- 3. Model building using space filling/ ball and stick models.
- 4. Reactions of amine acids, sugars and lipids.
- 5. Quantitation of proteins and sugars.
- 6. Analysis of oils- iodine number, saponification value, acid number.

Reference Books

- 1. Principles of Biochemistry by Nelson, Cox and Lehninger.
- 2. Biochemistry by G. Zubay
- 3. Biochemistry by Stryer
- 4. Biochemistry by Garrett and Grisham
- 5. Biochemical Calculations, Irwin H. Segel, john Wiley and sons Inc
- 6. Biochemistry, DVoet and jGVoet , J Wiley and Sons
- 7. Biochemistry, D Freifilder, W.H. Freeman & Compan,
- 8. Laboratory Techniques in Biochemistry and molecular Biology, Work and Work
- 9. A Biologists guide to Principles and Techniques of practical Biochemistry, K.Wilson& K.H. Goulding, ELBS Edition

KINDAGI

BT-104: BIOINSTRUMENTATION

UNIT I

2. Photometry: basic principles, types and applications application of UV-visible spectrophotometry:

Fluorescence spectroscopy: principle, instrumentation and applications
 Infrared (TD)

Infrared (IR) spectroscopy and its applications

UNIT II

2. Column chromatography: gel filtration, ion exchange and affinity chromatography

3. Electrophage

3. Electrophoresis: principle, types (Agarose, Native & SDS-PAGE) and its applications
4. 2-D cel sleet-residue (Agarose, Native & SDS-PAGE)

4. 2-D gel electrophoresis and its applications

UNIT III

- 1. Electron spin resonance (ESR) spectroscopy
- 2. Nuclear magnetic resonance (NMR)
- 3. Atomic absorption spectroscopy: principle, instrumentation and application
- 4. X-ray crystallography

UNIT IV

- 1. Mass spectrometry: principle and components of mass spectrometer
- 2. Mass analyzers: magnetic sector, time of flight (TOF), Quadruple
- 3. Cell Sorting: principle and applications
- 4. Flow cytometry: principle and applications

UNIT V

- 1. Microtomy and sample preparation for microscopy
- 2. Microscopy: basic principle and components of microscope
- 3. Phase contrast and fluorescent microscopes
- 4. Electron microscopy: principle and applications

KINDAM

- Verification of Beer's law 1.
- Determination of absorption maxima 2.
- Electrophoresis of Proteins- native and under denaturing conditions.
- Amino acid and carbohydrate separations by paper & thin layer chromatography 3. 4.
- Gas chromatography 5.
- Ion exchange and gel filtration chromatography
- Separation of subcellular organelles by differential centrifugation 6.
- Separation of blood cells by density gradient centrifugation 7. 8.

Reference Books

- Physical Biochemistry: Applications to Biochemistry and Molecular Biology by 1. Freifelder
- Biochemical Techniques: Theory and Practice by Robyt and White 2.
- Principles of Instrumental Analysis by Skoog and West 3.
- Analytical Biochemistry by Holme and Peck 4.
- Biological Spectroscopy by Campbell and Dwek 5.
- Organic Spectroscopy by Kemp 6.
- A Biologist's Guide to Pronciples and Techniques of Practical Biochemistry 7. by Wilson and Goulding
- Principles of Instrumental Analysis by Skoog, Hollar and Nicman 8.

BT-105 Practical -I

Consist of practical exercises listed out under BT-101 and BT-102

BT-106 Practical -II

Consist of practical exercises listed out under BT-103 and BT-104

BT-107 Seminar

BT-108 Assignment

BT-109 Comprehensive viva-voce

Aurage "

BT-201: MOLECULAR BIOLOGY

UNIT I

- Nature of Gene: chemical nature of gene, split genes, overlapping genes, nested
 - DNA Replication: General features of chromosomal replication. DNA replication
- machinery in prokaryotes and its comparisons with eukaryotes 2.
- Enzymology of DNA Replication: types and role 3.
- DNA damage and repair mechanisms

UNIT II

- Transcription in prokaryotes: structure and function of prokaryotic promoters
- Structure and function of RNA polymerase: Sigma factors- types and functions
- Control of transcriptional termination: attenuation and anti-termination
- Operon concept: structure and regulation of lactose and tryptophan operons

UNIT III

- Initiation of transcription in eukaryotes: RNA polymerases types and properties 1.
- Transcription factors- types and properties: Enhancers- structure and properties
- Post- transcriptional modifications in eukaryotes 3.
- Splicing and RNA editing

UNIT IV

- Genetic code: Wobble hypothesis 1.
- Translation: stages of protein synthesis in prokaryotes and eukaryotes
- Post-translational modification: types and significance
- Translational proof reading

UNIT V

- Regulation of gene expression in eukaryotes: cis and trans-acting elements 1.
- Chromatin organization and regulation of gene expression 2.
- Transposable elements in prokaryotes and eukaryotes 3.
- Oncogenes and tumor suppressor genes

AMONAN

- Isolation of Genomic DNA and restriction Digestion 1.
- Size fractionation of restricted DNA fragments by Agarose Gel Electrophoresis
- Quantitation of DNA 3.
- Determination of Amax of purified DNA fragments 4.
- Determination of Tm of nucleic acid
- Isolation of RNA
- Fractionation of poly (A) RNA 7.
- In vitro transcription 8.
- In vitro translation
- 10. Metabolic labeling of proteins and immunoprecipitation
- Protein-DNA interaction

Reference Books

- Genes IX Benjamin Lewin
- Molecular Biology, turner et al
- Cell and Molecular Biology: Concepts and Experiments, Gerald Karp
- Translational regulation in eukaryotes (2000), Carey and Smale
- Translational control of Gene Expression (2000), Sonenberg et al
- Chromatin and Gene Regulation (2001), Turner 6.
- An Introduction to Genetic Analysis, Griffiths et al
- Genome (1999), Brown 8.
- Concepts pf Genetics, Klug and Cummings
- 10. Proteins, Creighton
- 11. Molecular Cell Biology, Lodish et al
- 12. Biochemistry and Molecular Biology of Plants (2000), Buchanan
- 13. Plant Biochemistry and Molecular Biology, Lea and Leegood
- 14. Plant Biochemistry (1997), Dey and Harborne

MANDAM

BT-202: IMMUNO-TECHNOLOGY

UNIT I

- Immune response: Innate and adaptive immune system, Hematopoiesis and
- Anatomical organization of immune system: Primary and secondary lymphoid organs
- Cell of immune system: mononuclear cells and granulocyte, antigen presenting cells; 2. 3.
- Inflammation: its mediators and the process, immune response leading to an 4. inflammatory reaction

UNIT II

- Major histocompatibility systems: Organization of MHC with complex In humans 1.
- Antigen processing; role of MHC molecules in antigen presentation and co 2.
- T-cell receptor complex, T-cell accessory membrane molecules, activation of T-cell, 3. organization and arrangement of T-cell receptor genes
- B-cell receptor complex, Immunoglobulin's (class and subclass): structures type and function. Antigenic determinants of immunoglobulins (isotype, allotype and idiotype) 4.

UNIT III

- Molecular mechanism of antibody diversity; class switching 1.
- Antigen-Antibody infestation and affinity amusement 2.
- Monoclonal Antibodies: Principle of hybridoma technology and its application 3.
- Complement system: components, activation pathway; opsonization (opsonin)

UNIT IV

- Cytokines: Structure and function, cytokine related diseases and therapeutic 1. application of cytokines
- Cytotoxic T-Cell and their mechanism of action, NK cell and mechanism of target cell 2. destruction, antibody dependent cell mediated cytotoxicity
- Immune-regulation by antigens, antibodies and immune complexes 3.
- Hypersensitivity: types and related diseases 4.

UNIT V

- Mechanism of autoimmunity 1.
- Immunodeficiency syndromes; viral (HIV): diagnosis and therapeutic approaches
- Vaccines: active and passive immunization; recombinant-vector vaccines, DNA 2. vaccines, synthetic peptide vaccines and sub-unit vaccines 3.
- Techniques in cellular immunology; precipitation and agglutination techniques, ELISA, western blotting and immuno-histochemical techniques 4.

- Blood Film Preparation and identification of cells.
- Lymphoid organs and their microscopic organization.
- Immunization and production of polyclonal antibodies.
- Double diffusion and Immuno-electrophoresis.
- Radial immunodiffusion.
- Purification of IgG from serum.
- Separation of mononuclear cell by Ficoli-paque.
- 8. Con-A induced proliferation of thymocytes (by MTT Method).
- Western blotting.
- 10. ELISA
- 11. Preparation o antibody-enzyme conjugates.

Reference Books

- 1. Immunology, Kubey, R.A. Goldsby, Thomas J.Kindt, Barbara, A. Osbarne (Freeman).
- 2. Immunology- A short Course, Eli Benamini, Richard Coico, Geoffrey Sunshine.
- 3. Immunology by Tizzard
- 4. Fundamentals of Immunology, William Paul.
- 5. Immunology by Roitt and others.
- 6. Immunology by Abbas

KAMPARIN

BT-203: ENVIORNMENTAL BIOTECHNOLOGY (Part A)

- Environment pollution: types, methods for measurement of pollution Solid waste trooting and it Solid waste treatment: composting process, vermi-composting and its advantages Biomedical waste and its and its advantages
- UNIT I
 - Biomedical waste and its management 2.
 - Xenobiotics and its degradation 3.

UNIT II

- An integrated pest management- biopesticides: types and impact on environment Bioremediation: To all applications
- Bioremediation: In situ and Ex situ techniques advantages and applications of genetically engineered missing and applications.
- Phytoremediation: types and applications, Bio-indicators, GMOs and assessment of environmental impact and applications. 3. 4. environmental impact and monitoring

Practical Exercises

- Determination of dissolved oxygen concentration of water sample 1.
- Determination of biological oxygen demand (BOD) of sewage sample
- Determination of Chemical oxygen demand (COD) of sewage sample 2. 3.
- Isolation of xenobiot ic degrading bacteria by selective enrichment technique
- 4. Test for the degradation of aromatic hydrocarbons by bacteria
- Survey of degradative plasmids in microbes growing in polluted environment 5. 6.
- Study on biogenic methane production in different habitats 7.

Reference Books

- Comprehensive Biotechnology. Vol. 4,M. moo- young (Ed-In-chief), Pergmon Press 1. Oxford
- Environmental chemistry. A.K. De, Wiley Eastern Ltd., New Delhi
- Introduction to Biodeterioration. D.Allsopp and Seal, ELBS/ Edward Arnold
- Environmental Biotechnologies and Cleaner Bioprocess by Eugenia J Olguuin et al 3. 4.
- Environmental Science: Physical Principles and applications by Egbert Boeker et al

MAHDRAIT

BT-203: ANIMAL BIOTECHNOLOGY (Part B)

UNIT III

- Animal cell culture: organization of animal cell and tissue culture laboratory
- Culture medium: types, functions of different constituents of media, role of Co_2 1. 2.
- Cell lines; primary and established cell lines, cryopreservation 3.
- Measurement of growth parameters 4.

UNIT IV

- Scaling up of animal cell culture; cell synchronization 1.
- Cell cloning and selection of animal cells
- 2. Measurement of cell viability; methods of cell separation 3.
- Stem cell cultures and their applications

UNIT V

- Cytotoxicity assay: types and their significance
- Cell culture based vaccines with suitable example
- 3. 3-D animal cell culture
- Applications of animal cell culture

Practical Exercises

- Preparation of tissue culture medium and membrane filtration 1.
- Preparation of single cell suspension from spleen and thymus 2.
- Cell counting and viability 3.
- Macrophage monolayer from PEC and measurement of phagocytic activity 4.
- Cell fusion with PEG 5.

Reference Books

- Culture of Animal Cells by RI Freshney
- Animal Cell Culture: Practical Approach John R W Masters 2.
- Arimal Cell Culture Techniques by Ed. Martin Clynes 3.
- Methods in Cell Biology Vol. 57, Animal cell culture methods

HUDATE

BT-204: ENZYME-TECHNOLOGY

- Enzyme: Historical aspects, classification and nomenclature, EC number **UNIT I**
 - Mechanism of enzyme catalysis and properties of enzymes as catalyst

 - Methods of enzyme assay: continuous and sampling techniques, coupled enzyme assays specific and induced fit hypothesis 3. assays, specific activity and turn over number

UNIT II

- Enzyme purification: objectives and strategy, methods of isolation and affinity purification
- Criteria of purity and tabulation of purification data 2.
- 3. Characterization of purified enzyme
- Enzyme engineering and its applications

UNIT III

- Enzyme kinetics: Equilibrium and steady state theory, rate equation and 1. determination of Km and Vmax
- Factors affecting rate of enzyme reaction: pH, temperature and pressure
- Enzyme inhibition: reversible and irreversible inhibition, applications of inhibitors
- Rapid reaction techniques

UNIT IV

- Isoenzymes and their physiological significance
- Allosteric enzymes: co-operativity, MWC and KNF models 2.
- Regulation of enzymes 3.
- Ribozymes and its applications 4.

UNIT V

- Enzyme Immobilization: methods and its effect on kinetic parameters 1.
- Industrial applications of immobilized enzymes
- Enzyme biosensor: principle, types and components of biosensor 3.
- Applications of biosensor for clinical diagnosis

AHDATA ..

- Urease estimation by tritiometric method 1.
- Urease estimation by colorimetric method 2.
- 3. Acid phosphatase estimation
- 4.
- Determination of optimum time, optimum temperature & optimum pH 5.
- Determination of Km value 6.
- Acetylcholine esterase/pseudocholinesterase estimation 7.
- Enzyme purification 8.

Reference Books

- The nature of Enzymology by R.L. Foster 1.
- Enzymes by Dixon and Webb 2.
- Fundamentals of Enzymology by Price and Stevens 3.
- Enzyme Catalysis and Regulation by Hammes 4.
- Enzyme Reaction Mechanisms by Walsch 5.
- The Enzymes vol I and II by Boyer 6.
- Enzyme Structure and Mechanism by Alan Fersht
- Enzyme Assays : A Practical Approach by Eisenthal and Danson 7.

BT-205 Practical -I

Consist of practical exercises listed out under BT-201 and BT-202

BT-206 Practical -II

Consist of practical exercises listed out under BT-203 and BT-204

BT-207 Seminar

BT-208 Assignment

BT-209 Comprehensive viva-voce

UNIT I

- Incroduction and pasic principle of piochemical engineering
 Isolation, preservation and maintenance of industrially important microbes: Strain important microbes:
- improvement of industrially important microorganisms
- 4. Media for industrial fermentation, media formulation; Sterilization; Aeration and agitation in bioprocess

UNIT II

- Scale of fermentation process: small scale, large scale and pilot scale fermentations
 Biorecators: Principle
- 3. Types of fermentation processes; batch, fed-batch, and continuous bioreactions
- 4. Measurement and control of fermentation: pH, temperature, pressure, media, air, automation of the monitoring and control process

UNIT III

- Upstream processing and downstream processing: Introduction and concept
- 2. Downstream processing: removal of microbial cells and solid matter, foam separation, precipitation, centrifugation, cell disruption, reverse osmosis
- 3. Extraction: Solvent, two phases, liquid extraction
- 4. Product recovery processes

UNIT IV

- 1. Industrial production: Vitamins and amino acids (Vit B_{12} & glutamic acid)
- 2. Industrial production: antibiotics: Penicillin and streptomycin
- Enzyme production: Proteases
- 4. Recovery and scaling up of enzymes and their applications

UNIT V

- 1. Microbial production of alcoholic beverages: distilled alcoholic beverages-beer, microbial production of vinegar
- 2. Microbial production of organic acids: citric acid and acetic acid
- 3. Microbial production of solvents: ethanol and acetone
- 4. Microbial production of food: SCP and their applications

AHDWAY.

- 1. Isolation of industrially important microbes from the environment
- 2. Determination of TDP and TDT of microorganisms for a design of a sterilizer
- 3. Determination of growth curve of a industrial organism and compute substrate, degradation profile, specific growth rate and growth yield
- 4. Screening and enrichment for a primary/ secondary metabolite from the environment
- 5. Strain improvement for higher yield of a product
- 6. Random and strategic screening for a metabolite
- 7. Media balancing experiments
- 8. Alcohol fermentation using different substrates and its downstream processing

Reference Books

- Biochemical Engineering, Aiba, S., Humphrey, A.E. and millis, N.F. Univ. Tokyo Press, Tokyo.
- 2. Biochemical Reactors, Atkinson, B., Pion Ltd. London.
- Biochemical Engineering Fundamentals, Baily. J. E. and ollis , D.F. Mcgraw- Hill Book Co. New York.
- 4. Bioprocess Technology: Fundamentals and Applications , KTH, Stockhlom.
- 5. Process Engineering in Biotechnology, Jackson, A.T., Prentice Hall, Engelwood Cliffs.
- 6. Bioprocess Engineering: Basic Concepts Shuler, M.L. and Kargi , F., Prentice Hall, Englewood Cliffs..
- 7. Principles of fermentation Technology, Stanbury, P.F. and Whitakar A., Pergmon Press, Oxford.
- 8. Bioreaction Engineering Principles, Nielson, J and Villadson, J., Plenum Press.
- 9. Chemical Engineering, Problems in Biotechnology, Shuler, M.L.(Ed.), AICHE.
- 10. Biochemical Engineering, Lee, J.M., Prentice Hall Inc.
- 11. Bioprocess Engineering- Kinetics, Mass Transport, Reactiors and Gene Expression, Vieth, -W.F., John Wiley & Sons, Inc.

AHDAG!

BT-302: GENETIC ENGINEERING

UNIT I

- 1. Concept and Principle of recombinant DNA Technology Prokaryotic host-vector system: Characteristics of *E. coli* as host; vectors for cloning in *E. coli* (electric).
- in E. coli (plasmid and cosmid), Shuttle vectors
- 4. Genome editing: principle and applications

UNIT II

- Design and characteristics of expression vectors for cloning in prokaryotes
- Cloning in yeast: YACs
- 3. Methods of introduction of foreign DNA into animal system
- 4. Viral vectors: SV-40 and retrovirus vectors

UNIT III

- 1. Methods for screening and selection of recombinant clones
- 2. Methods for constructing rDNA
- 3. DNA Libraries: types, advantages and disadvantages
- 4. Restriction mapping of the insert

UNIT IV

- 1. DNA sequencing: chemical and enzymatic methods, high throughputs sequencers
- 2. Localization of cloned segments in genomes: molecular and chromosomal location
- 3. Methods for determination of copy number of a cloned gene in genome
- 4. Mutant construction: deletion, insertion and point mutation

UNIT V

- 1. Gene silencing: principle and applications
- 2. Polymerase chain reaction and types (real time, hot start PCR, colony PCR)
- 3. Cloning of animals; methods and applications
- 4. Applications of recombinant DNA technology in medicine and agriculture

KTHD HAM

- 1. Bacterial Culture and antibiotic selection media. Preparation of competent cells
- 2. Isolation of plasmid DNA
- 3. Isolation of phage DNA
- 4. Quantitation of nucleic acids
- 5. Restriction mapping of plasmid DNA
- 6. Cloning in plasmid/phagemid vectors
- 7. Preparation of helper phage and its titration
- 8. Preparation of single stranded DNA template
- 9. Gene expression in E.coli and analysis of gene product
- 10. Polymerase Chain Reaction

Reference Books

- 1. Recombinant DNA By Watson et al
- 2. Principles of Gene Manipulation, Old and Primrose
- 3. Gene Cloning: An introduction, Brown
- 4. Biotechnology: Theory and Techniques (Vol I & II, 1995), Chirikjian
- 5. Molecular Genetics of Bacteria , Dale
- Molecular Cloning (Vol I, II & III, 2001), Sambrook & Russell
- Applied Molecular Genetics (1999), Miesfeld
- 8. Genes and Genome (1991), Singer & Berg
- 9. Molecular Biotechnology, Glick & Pasternak
- 10. Plant Molecular Biology (Vol I & II, 2002), Gilmartin & Bowler

*HATT YEAR

BT-303-A: BIOSTATISTICS AND BIOINFORMATICS

UNIT I

- Introduction to Biostatistics, population and Sampling Methods
- 2. Classification, tabulation and graphical presentation of data
- 4. Measures of variability, Standard deviation, Standard error, Coefficient of variation, Analysis of variance (ANOVA)

UNIT II

- 2. Regression: regression analysis, estimation, testing, prediction, checking and residual analysis
- 3. Multivariate Analysis
- 4. Design of Experiment, randomization, replication, local control, randomized block design

Unit III

- 1. Bioinformatics: Application of bioinformatics in biotechnology
- 2. Biological databases: primary database, secondary database and composite database
- 3. Sequence databases: Nucleic acid (EMBL and GenBank), protein databases (PIR and SWISS-PROT)
- 4. Structure database: protein data bank (PDB)

Unit IV

- 1. Sequence analysis: biological motivation of sequence analysis, homology (orthologs, Paralogs)
- 2. Base Pair Alignment: local alignment, global alignment, tools for base pair alignment- BLAST and FASTA
- 3. Methods of Multiple sequence alignment (MSA)
- 4. Phylogenetic analysis: character based methods, distance based methods, tree evaluation

Unit V

- 1. Protein structure prediction: homology modelling
- 2. Computer aided drug designing- basic principles, docking and its type
- 3. Expression Sequence Tags (EST) and its applications
- 4. Microarray database and its application

Reference Books

- 1. Introduction to Bioinformatics: A theoretical and practical approach by Stephen A
- 2. Bioinformatics Genes, Proteins & Computers by CA Orengo, DT Jopnes and JM
- 3. An Introduction to Computational Biochemistry by C Stan T Sai
- 4. Instant notes on Bioinformatics by DR Westhead, JM Perish & RM Toyman
- 6. An Introduction to Bioinformatics Algorithms by Neil C. Jones, Pavel Pevzner
- 7. Bioinformatics: Sequence and Genome Analysis by David W. Mount
- 8. Statistical Methods in Bioinformatics: An Introduction by Stephen Misener, Stephen
- 9. Bioinformatics: databases and Algorithms by N. Gautham
- 10. Bioinformatics Technologies by Yi-Ping Phoebe Chen
- 11. Data Mining: Multimedia, Soft Computing and Bioinformatics by Sushmita Mitra, Tinku Acharya

KHID 431

BT-303-B: ETERPRENEURSHIP IN BIOTECHNOLOGY

- Creativity and Entrepreneurial personality and Entrepreneurship in Biotechnology UNIT I
 - 1. Organizational Structure and management
- 3.
- 4.
- Government schemes for commercialization of technology (Eg. Biotech Consortium). 5.

UNIT II

- Basics of production management: Methods of manufacturing-Project/ jobbing, Batch production, process production-Characteristics of each method. Plant location-Importance-Factors affecting location-Factory building-Plant layout- Installation of
- Operational research: Linear programming, PERT and CPM; Production planning and 2. Control-Scheduling-Gantt Charts-Documentation-Production-Work Order.
- 3. Basics of material management.

UNIT III

- 1. Kaizen (Continuous improvement in product and management)
- 2. Six Sigma
- 3. Biotech enterprises: Small, Medium and Large
- Quality control in Biotech industries.

UNIT IV

- Government regulations for Biotech products
- Public policy, regulatory and ethical challenges facing the biotechnology entrepreneurship
- Business development for medical products 3.
- Business development for consumable products. 4.

UNIT V

24

- Patenting System: WTO, Paris Convention, Indian Legislations. 1.
- Intellectual Property: A. Copy Right and Industrial Properties, Trade Marks, Designs, geographical Indications.
- IPR and Technology Transfer, Role if patentee and Licensor 3.
- Patent process and Patent Laws and e-filing. 4.

Reference Books

- 1. Innovation and Entrepreneurship in Biotechnology: Concept, Theories and Cases by Hyne & Others.
- 2. John Kapeleris, 2006. 3. The business of Biotechnology: From the bench to the Street: by Richard Dano Ono, published by Butterworth-Heinemann, 1991.
- 4. Entrepreneurship in Biotechnology: Managing For Growth from start-up: By Martin Gross Mann, 2003.
- 5. Best Practices inBiotechnology Education: By Yali Friedman, published by Logos
- 6. Plant Development and Biotechnology: By Robert Nicholas Trigiano, Dennis John Gray; published by CRC Press, 2004. * HADARIN

BT-304-A: PLANT BIOTECHNOLOGY

UNIT I

- Objectives and landmarks in plant breeding
- 3. Genetically modified crops for resistance against biotic and abiotic stresses

 4. Seed product.
- 4. Seed production techniques: release of new varieties

UNIT II

- 1. Introduction to plant tissue culture: Tissue Culture Media preparation
- 2. Initiation of callus culture and its maintenance
- 3. Cell synchronization
- 4. Organogenesis: Somatic embryo hybridization

UNIT III

- 1. Somaclonal variation and its application for plant improvement
- 2. Anther culture: plant production and their applications
- 3. Protoplast technology: isolation and fusion methods
- 4. Cryopreservation techniques and is application

UNIT IV

- 1. Plant cloning vectors: Ti & Ri plasmid
- Germplasm maintenance
 Insect resistance: Bt genes, Non-Bt like protease inhibitors and lectins
- 4. Marker types: morphological, biochemical and molecular; advantages and disadvantages

UNIT V

- 1. Plant DNA fingerprinting: PCR based markers (RAPD, SSR's)
- 2. Plant Genome mapping: Physical and molecular maps
- 3. Plant breeders' right: UPOV act
- 4. Intellectual property right (IPR) and patenting of biological material

KHDAAN

- 1. Bacterial Culture and antibiotic selection media. Preparation of competent cells
- 2. Isolation of plasmid DNA
- 3. Isolation of phage DNA
- 4. Quantitation of nucleic acids
- 5. Restriction mapping of plasmid DNA
- 6. Cloning in plasmid/phagemid vectors
- 7. Preparation of helper phage and its titration
- 8. Preparation of single stranded DNA template
- 9. Gene expression in $\it E.coli$ and analysis of gene product
- 10. Polymerase Chain Reaction

Reference Books

- Recombinant DNA By Watson et al
- Principles of Gene Manipulation, Old and Primrose 1.
- 2.
- Biotechnology: Theory and Techniques (Vol I & II, 1995), Chirikjian 3.
- Molecular Genetics of Bacteria , Dale 4.
- Molecular Cloning (Vol I, II & III, 2001), Sambrook & Russell 5.
- Applied Molecular Genetics (1999), Miesfeld 6.
- Genes and Genome (1991), Singer & Berg
- Molecular Biotechnology , Glick & Pasternak 8. 9.
- Plant Molecular Biology (Vol I & II, 2002), Gilmartin & Bowler 10.

AHD HAM

BT-304-B: Nano-Biotechnology

Unit I

- 1. Definitions and historical evolution of nanomaterial
- 3. Nanoscience & Nanotechnology: Fundamentals and classifications
 4. Physical and discountered in the second seco
- 4. Physical and chemical characteristics of Nanomaterials

Unit II

- 2. Types of Nanomaterials; one-dimensional: CNTs, its types and characteristics
 3. Two-dimensional:
- 3. Two-dimensional: Nanofilms, nanosheets, nanowalls
- 4. Nanocrystal, Nanoparticle, Quantum dot, Quantum Wire

Unit III

- 1. Nanomaterial and bio system interaction. Quantum effects on nanomaterial
- 3. Preparation of Nanomaterials: Physical method (hydrothermal and solvothermal) and
- 4. Preparation of Nanomaterials: Biological methods (Green synthesis using plants, microbes & other living organisms)

Unit IV

- 1. Applications of Nanobietechnology: nanomedicine, nanocosmetics
- 2. Nanosensors (Biological, chemical, biosensors, gas sensors, mechanical)
- 3. Nanomaterials and Diagnostics/Drug Delivery and Therapeutics
- 4. Current trends of research in nano biotechnology, in health sciences

Unit V

- 1. Effect of Nario materials on growth and development of plants: bio uptake, Localization, and transformation of nanoparticles within plants
- 2. Nano agriculture for sustainable agricultural crop production, application and perspectives
- 3. Nanoparticles for herbicide, pesticides and fertilizers delivery
- 4. Role of Nanoparticles in Photosynthesis and Toxicity Evaluation

समामवर्ग ..

- Synthesis of nanoparticles by physical method & chemical method.
- 2. Green synthesis of nanoparticles using plant system from leaves, fruit, callus etc.
- 3. Characterization of nanoparticles using UV Visible spectroscopy, XRD, FTIR.
- 5. To check the bioactivity of nanomaterials on various pathological Fungi and Bacteria.
- 6. To check the effect of nanomaterials on plant germination parameters.

Reference Books:

- Applications.2008. **Fundamentals** and Nanotechnology:
- 2. K. Eric Drexler, Chris Peterson and Gayle Pergamit Unbouding the future: The Nanotechnology Revolution 1991. William Morrow and Company, Inc, New York.
- 3. C.N.R Rao. Nanoworld: An Introduction to nanoscience and Technology.2010. Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore.
- 4. ManzerH.Siddiqui, M.H.AI Whabhi, F. Mohammad (Editors). Nanotechnology and
- 5. C.M. Niemeyer and C.A. Mirkin. Nanobiotechnology. 2012. Wiley-VCH.
- 6. C.M.Niemeyer and C.A. Mirkin Nanobiotechnology-II. 2012. Wiley-VCH.

HOTO HAY

BT-401: EMERGING TRENDS IN BIOTECHNOLOGY

UNIT I

- Stem cell Technology: types of stem cells Manipulation of stem cells and its application in medicine 1.
- Biosensors: Concept, principle and types 2. 3.
- Biosensors in medicine with suitable example 4.

UNIT II

- Genomics: general methods of genome analysis 1.
- Basic concepts of transcriptome and transcriptomics 2.
- Proteome and Proteomics: concept and methods of proteome analysis 3.
- Basic concepts of metabolome and metabolomics 4.

UNIT III

- Nano biotechnology: Introduction and biological materials-example and uses 1.
- DNA nanotechnology, methods of nanoparticles synthesis 2.
- Nanoparticles-biological arrays-nanoprobes for analytical applications 3.
- Nano biosersors and its application in medical diagnostics

UNIT IV

- Microarray Technology and its application 1.
- Pharmacogenomics and its application 2.
- Biosafety and animal ethics 3.
- Drug development strategies 4.

UNIT V

- Genome editing; concept of CRISPR technology 1.
- Structure and functions of Cas9 2.
- CRISPR applications in plants with suitable example 3.
- CRISPR applications in human therapeutics 4.

AMONG!

Appropriate exercises based on theory.

Reference Books

- 1. DNA Microarrays and gene expression by P. Baldi & GW Hatfield
- 2. Protein Protein Interactions by Erica Golemis
- 3. A passion for DNA (Genesm genomes and Soceity) By JD Watson
- 4. Modern Genetic analysis by Anthony T Griffiths et al.
- 5. Nanobiotechnology- next big idea by Mark, Ratner, Daniel Ratner
- 6. Gene cloning by TA Brown
- 7. Latest information on academic Web sites.

BT-402 Project work (semester long dissertation for about 4 months)

BT-403 Seminar

BT-404 Assignment (Technical and review writing)

BT-405 Comprehensive viva-voce

AHD HAY